#include #include #include #include #include #include "globals.h" #include "tools.h" #include "registries.h" #include "procedures.h" #include "worldgen.h" uint32_t getChunkHash (short x, short z) { uint8_t buf[8]; memcpy(buf, &x, 2); memcpy(buf + 2, &z, 2); memcpy(buf + 4, &world_seed, 4); return splitmix64(*((uint64_t *)buf)); } uint8_t getChunkBiome (short x, short z) { // Center biomes on 0;0 x += BIOME_RADIUS; z += BIOME_RADIUS; // Calculate distance from biome center int8_t dx = BIOME_RADIUS - mod_abs(x, BIOME_SIZE); int8_t dz = BIOME_RADIUS - mod_abs(z, BIOME_SIZE); // Each biome is a circular island, with beaches in-between // Determine whether the given chunk is within the island if (dx * dx + dz * dz > BIOME_RADIUS * BIOME_RADIUS) return W_beach; // Calculate "biome coordinates" (one step above chunk coordinates) short biome_x = div_floor(x, BIOME_SIZE); short biome_z = div_floor(z, BIOME_SIZE); // The biome itself is plucked directly from the world seed. // The 32-bit seed is treated as a 4x4 biome matrix, with each biome // taking up 2 bytes. This is why there are only 4 biomes, excluding // beaches. Using the world seed as a repeating pattern avoids // having to generate and layer yet another hash. uint8_t index = abs((biome_x & 3) + ((biome_z * 4) & 15)); return (world_seed >> (index * 2)) & 3; } uint8_t getCornerHeight (uint32_t hash, uint8_t biome) { // When calculating the height, parts of the hash are used as random values. // Often, multiple values are stacked to stabilize the distribution while // allowing for occasionally larger variances. uint8_t height = TERRAIN_BASE_HEIGHT; switch (biome) { case W_mangrove_swamp: { height += ( (hash % 3) + ((hash >> 4) % 3) + ((hash >> 8) % 3) + ((hash >> 12) % 3) ); // If height dips below sea level, push it down further // This ends up creating many large ponds of water if (height < 64) height -= (hash >> 24) & 3; break; } case W_plains: { height += ( (hash & 3) + (hash >> 4 & 3) + (hash >> 8 & 3) + (hash >> 12 & 3) ); break; } case W_desert: { height += 4 + ( (hash & 3) + (hash >> 4 & 3) ); break; } case W_beach: { // Start slightly below sea level to ensure it's all water height = 62 - ( (hash & 3) + (hash >> 4 & 3) + (hash >> 8 & 3) ); break; } case W_snowy_plains: { // Use fewer components with larger ranges to create hills height += ( (hash & 7) + (hash >> 4 & 7) ); break; } default: break; } return height; } uint8_t interpolate (uint8_t a, uint8_t b, uint8_t c, uint8_t d, int x, int z) { uint16_t top = a * (CHUNK_SIZE - x) + b * x; uint16_t bottom = c * (CHUNK_SIZE - x) + d * x; return (top * (CHUNK_SIZE - z) + bottom * z) / (CHUNK_SIZE * CHUNK_SIZE); } // Calculates terrain height using a pointer to an array of anchors // The pointer should point towards the minichunk containing the desired // coordinates, with available neighbors on +X and +Z. uint8_t getHeightAtFromAnchors (int rx, int rz, ChunkAnchor *anchor_ptr) { if (rx == 0 && rz == 0) { int height = getCornerHeight(anchor_ptr[0].hash, anchor_ptr[0].biome); if (height > 67) return height - 1; } return interpolate( getCornerHeight(anchor_ptr[0].hash, anchor_ptr[0].biome), getCornerHeight(anchor_ptr[1].hash, anchor_ptr[1].biome), getCornerHeight(anchor_ptr[16 / CHUNK_SIZE + 1].hash, anchor_ptr[16 / CHUNK_SIZE + 1].biome), getCornerHeight(anchor_ptr[16 / CHUNK_SIZE + 2].hash, anchor_ptr[16 / CHUNK_SIZE + 2].biome), rx, rz ); } uint8_t getHeightAtFromHash (int rx, int rz, int _x, int _z, uint32_t chunk_hash, uint8_t biome) { if (rx == 0 && rz == 0) { int height = getCornerHeight(chunk_hash, biome); if (height > 67) return height - 1; } return interpolate( getCornerHeight(chunk_hash, biome), getCornerHeight(getChunkHash(_x + 1, _z), getChunkBiome(_x + 1, _z)), getCornerHeight(getChunkHash(_x, _z + 1), getChunkBiome(_x, _z + 1)), getCornerHeight(getChunkHash(_x + 1, _z + 1), getChunkBiome(_x + 1, _z + 1)), rx, rz ); } // Get terrain height at the given coordinates // Does *not* account for block changes uint8_t getHeightAt (int x, int z) { int _x = div_floor(x, CHUNK_SIZE); int _z = div_floor(z, CHUNK_SIZE); int rx = mod_abs(x, CHUNK_SIZE); int rz = mod_abs(z, CHUNK_SIZE); uint32_t chunk_hash = getChunkHash(_x, _z); uint8_t biome = getChunkBiome(_x, _z); return getHeightAtFromHash(rx, rz, _x, _z, chunk_hash, biome); } uint8_t getTerrainAtFromCache (int x, int y, int z, int rx, int rz, ChunkAnchor anchor, ChunkFeature feature, uint8_t height) { if (y < 64 || y < height) goto skip_feature; switch (anchor.biome) { case W_plains: { // Generate trees in the plains biome // Don't generate trees underwater if (feature.y < 64) break; // Handle tree stem and the dirt under it if (x == feature.x && z == feature.z) { if (y == feature.y - 1) return B_dirt; if (y >= feature.y && y < feature.y - feature.variant + 6) return B_oak_log; } // Get X/Z distance from center of tree uint8_t dx = x > feature.x ? x - feature.x : feature.x - x; uint8_t dz = z > feature.z ? z - feature.z : feature.z - z; // Generate leaf clusters if (dx < 3 && dz < 3 && y > feature.y - feature.variant + 2 && y < feature.y - feature.variant + 5) { if (y == feature.y - feature.variant + 4 && dx == 2 && dz == 2) break; return B_oak_leaves; } if (dx < 2 && dz < 2 && y >= feature.y - feature.variant + 5 && y <= feature.y - feature.variant + 6) { if (y == feature.y - feature.variant + 6 && dx == 1 && dz == 1) break; return B_oak_leaves; } // Since we're sure that we're above sea level and in a plains biome, // there's no need to drop down to decide the surrounding blocks. if (y == height) return B_grass_block; return B_air; } case W_desert: { // Generate dead bushes and cacti in deserts if (x != feature.x || z != feature.z) break; if (feature.variant == 0) { if (y == height + 1) return B_dead_bush; } else if (y > height) { // The size of the cactus is determined based on whether the terrain // height is even or odd at the target location if (height & 1 && y <= height + 3) return B_cactus; if (y <= height + 2) return B_cactus; } break; } case W_mangrove_swamp: { // Generate lilypads and moss carpets in swamps if (x == feature.x && z == feature.z && y == 64 && height < 63) { return B_lily_pad; } if (y == height + 1) { uint8_t dx = x > feature.x ? x - feature.x : feature.x - x; uint8_t dz = z > feature.z ? z - feature.z : feature.z - z; if (dx + dz < 4) return B_moss_carpet; } break; } case W_snowy_plains: { // Generate grass stubs in snowy plains if (x == feature.x && z == feature.z && y == height + 1 && height >= 64) { return B_short_grass; } break; } default: break; } skip_feature: // Handle surface-level terrain (the very topmost blocks) if (height >= 63) { if (y == height) { if (anchor.biome == W_mangrove_swamp) return B_mud; if (anchor.biome == W_snowy_plains) return B_snowy_grass_block; if (anchor.biome == W_desert) return B_sand; if (anchor.biome == W_beach) return B_sand; return B_grass_block; } if (anchor.biome == W_snowy_plains && y == height + 1) { return B_snow; } } // Starting at 4 blocks below terrain level, generate minerals and caves if (y <= height - 4) { // Caves use the same shape as surface terrain, just mirrored int8_t gap = height - TERRAIN_BASE_HEIGHT; if (y < CAVE_BASE_DEPTH + gap && y > CAVE_BASE_DEPTH - gap) return B_air; // The chunk-relative X and Z coordinates are used as the seed for an // xorshift RNG/hash function to generate the Y coordinate of the ore // in this column. This way, each column is guaranteed to have exactly // one ore candidate, as there will always be a Y value to reference. uint8_t ore_y = ((rx & 15) << 4) + (rz & 15); ore_y ^= ore_y << 4; ore_y ^= ore_y >> 5; ore_y ^= ore_y << 1; ore_y &= 63; if (y == ore_y) { // Since the ore Y coordinate is effectely a random number in range [0;64), // we use it in a bit shift with the chunk's anchor hash to get another // pseudo-random number for the ore's rarity. uint8_t ore_probability = (anchor.hash >> (ore_y % 24)) & 255; // Ore placement is determined by Y level and "probability" if (y < 15) { if (ore_probability < 10) return B_diamond_ore; if (ore_probability < 12) return B_gold_ore; if (ore_probability < 15) return B_redstone_ore; } if (y < 30) { if (ore_probability < 3) return B_gold_ore; if (ore_probability < 8) return B_redstone_ore; } if (y < 54) { if (ore_probability < 30) return B_iron_ore; if (ore_probability < 40) return B_copper_ore; } if (ore_probability < 60) return B_coal_ore; if (y < 5) return B_lava; return B_cobblestone; } // For everything else, fall back to stone return B_stone; } // Handle the space between stone and grass if (y <= height) { if (anchor.biome == W_desert) return B_sandstone; if (anchor.biome == W_mangrove_swamp) return B_mud; if (anchor.biome == W_beach && height > 64) return B_sandstone; return B_dirt; } // If all else failed, but we're below sea level, generate water (or ice) if (y == 63 && anchor.biome == W_snowy_plains) return B_ice; if (y < 64) return B_water; // For everything else, fall back to air return B_air; } ChunkFeature getFeatureFromAnchor (ChunkAnchor anchor) { ChunkFeature feature; uint8_t feature_position = anchor.hash % (CHUNK_SIZE * CHUNK_SIZE); feature.x = feature_position % CHUNK_SIZE; feature.z = feature_position / CHUNK_SIZE; uint8_t skip_feature = false; // The following check does two things: // firstly, it ensures that trees don't cross chunk boundaries; // secondly, it reduces overall feature count. This is favorable // everywhere except for swamps, which are otherwise very boring. if (anchor.biome != W_mangrove_swamp) { if (feature.x < 3 || feature.x > CHUNK_SIZE - 3) skip_feature = true; else if (feature.z < 3 || feature.z > CHUNK_SIZE - 3) skip_feature = true; } if (skip_feature) { // Skipped features are indicated by a Y coordinate of 0xFF (255) feature.y = 0xFF; } else { feature.x += anchor.x * CHUNK_SIZE; feature.z += anchor.z * CHUNK_SIZE; feature.y = getHeightAtFromHash( mod_abs(feature.x, CHUNK_SIZE), mod_abs(feature.z, CHUNK_SIZE), anchor.x, anchor.z, anchor.hash, anchor.biome ) + 1; feature.variant = (anchor.hash >> (feature.x + feature.z)) & 1; } return feature; } uint8_t getTerrainAt (int x, int y, int z, ChunkAnchor anchor) { if (y > 80) return B_air; int rx = x % CHUNK_SIZE; int rz = z % CHUNK_SIZE; if (rx < 0) rx += CHUNK_SIZE; if (rz < 0) rz += CHUNK_SIZE; ChunkFeature feature = getFeatureFromAnchor(anchor); uint8_t height = getHeightAtFromHash(rx, rz, anchor.x, anchor.z, anchor.hash, anchor.biome); return getTerrainAtFromCache(x, y, z, rx, rz, anchor, feature, height); } uint8_t getBlockAt (int x, int y, int z) { if (y < 0) return B_bedrock; uint8_t block_change = getBlockChange(x, y, z); if (block_change != 0xFF) return block_change; short anchor_x = div_floor(x, CHUNK_SIZE); short anchor_z = div_floor(z, CHUNK_SIZE); ChunkAnchor anchor = { .x = anchor_x, .z = anchor_z, .hash = getChunkHash(anchor_x, anchor_z), .biome = getChunkBiome(anchor_x, anchor_z) }; return getTerrainAt(x, y, z, anchor); } uint8_t chunk_section[4096]; ChunkAnchor chunk_anchors[(16 / CHUNK_SIZE + 1) * (16 / CHUNK_SIZE + 1)]; ChunkFeature chunk_features[256 / (CHUNK_SIZE * CHUNK_SIZE)]; uint8_t chunk_section_height[16][16]; // Builds a 16x16x16 chunk of blocks and writes it to `chunk_section` // Returns the biome at the origin corner of the chunk uint8_t buildChunkSection (int cx, int cy, int cz) { // Precompute hashes, anchors and features for each relevant minichunk int anchor_index = 0, feature_index = 0; for (int i = cz; i < cz + 16 + CHUNK_SIZE; i += CHUNK_SIZE) { for (int j = cx; j < cx + 16 + CHUNK_SIZE; j += CHUNK_SIZE) { ChunkAnchor *anchor = chunk_anchors + anchor_index; anchor->x = j / CHUNK_SIZE; anchor->z = i / CHUNK_SIZE; anchor->hash = getChunkHash(anchor->x, anchor->z); anchor->biome = getChunkBiome(anchor->x, anchor->z); // Compute chunk features for the minichunks within this section if (i != cz + 16 && j != cx + 16) { chunk_features[feature_index] = getFeatureFromAnchor(*anchor); feature_index ++; } anchor_index ++; } } // Precompute terrain height for entire chunk section for (int i = 0; i < 16; i ++) { for (int j = 0; j < 16; j ++) { anchor_index = (j / CHUNK_SIZE) + (i / CHUNK_SIZE) * (16 / CHUNK_SIZE + 1); ChunkAnchor *anchor_ptr = chunk_anchors + anchor_index; chunk_section_height[j][i] = getHeightAtFromAnchors(j % CHUNK_SIZE, i % CHUNK_SIZE, anchor_ptr); } } // Generate 4096 blocks in one buffer to reduce overhead for (int j = 0; j < 4096; j += 8) { // These values don't change in the lower array, // since all of the operations are on multiples of 8 int y = j / 256 + cy; int rz = j / 16 % 16; int rz_mod = rz % CHUNK_SIZE; feature_index = (j % 16) / CHUNK_SIZE + (j / 16 % 16) / CHUNK_SIZE * (16 / CHUNK_SIZE); anchor_index = (j % 16) / CHUNK_SIZE + (j / 16 % 16) / CHUNK_SIZE * (16 / CHUNK_SIZE + 1); // The client expects "big-endian longs", which in our // case means reversing the order in which we store/send // each 8 block sequence. for (int offset = 7; offset >= 0; offset--) { int k = j + offset; int rx = k % 16; // Combine all of the cached data to retrieve the block chunk_section[j + 7 - offset] = getTerrainAtFromCache( rx + cx, y, rz + cz, rx % CHUNK_SIZE, rz_mod, chunk_anchors[anchor_index], chunk_features[feature_index], chunk_section_height[rx][rz] ); } } // Apply block changes on top of terrain // This does mean that we're generating some terrain only to replace it, // but it's better to apply changes in one run rather than in individual // runs per block, as this is more expensive than terrain generation. for (int i = 0; i < block_changes_count; i ++) { if (block_changes[i].block == 0xFF) continue; // Skip blocks that behave better when sent using a block update if (block_changes[i].block == B_torch) continue; #ifdef ALLOW_CHESTS if (block_changes[i].block == B_chest) continue; #endif if ( // Check if block is within this chunk section block_changes[i].x >= cx && block_changes[i].x < cx + 16 && block_changes[i].y >= cy && block_changes[i].y < cy + 16 && block_changes[i].z >= cz && block_changes[i].z < cz + 16 ) { int dx = block_changes[i].x - cx; int dy = block_changes[i].y - cy; int dz = block_changes[i].z - cz; // Same 8-block sequence reversal as before, this time 10x dirtier // because we're working with specific indexes. unsigned address = (unsigned)(dx + (dz << 4) + (dy << 8)); unsigned index = (address & ~7u) | (7u - (address & 7u)); chunk_section[index] = block_changes[i].block; } } return chunk_anchors[0].biome; }