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Introduction
In this article, we’ll be looking into the hardware of GPUs, and then
designing our own. Specifically GPUs with unified shader architecture.

Comparison with CPUs
GPUs focus on operating on a lot of data at once (triangles, vertices,
pixels, …), while CPUs focus on high performance on a single core, and low
compute delay.

GPU Architecture
GPUs consists of multiple (these days at least 32) compute units (= CU).

Each compute unit has multiple SIMD units, also called “wave”, “wavefront”
or “warp”. Compute units also have some fast local memory (tens of
kilobytes), main memory access queues, texture units, a scalar unit, and
other features. Subscribe to the Atom feed3 to get notified of future
articles.

The main memory (graphics memory) is typically outside of the GPU, and is
slow, but high-bandwidth memory.

1https://github.com/alex-s168/website/tree/5a9dfdd720bcba1e5d1562279e09c674a30a174b
2https://alex.vxcc.dev
3atom.xml
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Waves
A wave is a SIMD processing unit consisting of typically 32
“lanes” (sometimes called threads).

Each wave in a CU has separate control flow, and doesn’t have to be
related.

Instructions that waves support:
• arithmetic operations
• cross-lane data movement
• CU local and global memory access: each SIMD lane can access a completely
different address. similar to CPU gather / scatter.

• synchronization with other CUs in the work group (see future article)

Since only the whole wave can do control flow, and not each lane, all
operations can be masked so that they only apply to specific lanes.

=> waves are really similar to SIMD on modern CPUs

In modern GPUs, instruction execution in waves is superscalar, so there are
multiple different execution units for executing different kinds of
instructions, and multiple instructions can be executed at once, if there
are free execution units, and they don’t depend on each other.

We’ll be exploring that in a future article.

Local memory
The local memory inside GPUs is banked, typically into 32 banks. The memory
word size is typically 32 bits.

The addresses are interlaved, so for two banks:
• addr 0 => bank 0
• addr 1 => bank 1
• addr 2 => bank 0
• addr 3 => bank 1
• …

Each bank has an dedicated access port, so for 32 banks, you get 32 access
ports.

The lanes of the waves inside a CU get routed to the local memory banks
magically.

Why are the banks interlaved?

When the whole wave wants to read a contiguous array of f32 , so when each

wave performs some_f32_array[lane_id()] , all 32 banks can be used at the same
time.
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Why multiple waves share the same local memory

A wave doesn’t do memory accesses every instruction, but also does
computations. This means that there are cycles where the memory isn’t doing
anything.

By making multiple waves share the same local memory and access ports, you
save resources.

Global memory
Since global memory reads/writes are really slow, they happen
asynchronosly.

This means that a wave requests an access, then can continue executing, and
then eventually waits for that access to finish.

Because of this, modern compilers automagically start the access before the
data is needed, and then wait for the data later on.

Scalar unit
Most newer GPUs also have a scalar unit for saving energy when performing
simple operations.

When the controller sees a scalar instruction in the code running on a
wave, it automatically makes the code run on the scalar unit.

The scalar unit can be used for:
• address calculation
• partial reductions
• execution of expensive operations not implemented on SIMD because of
costs

GPU Programming Terminology
• “work item”: typically maps to a SIMD lane
• “kernel”: the code for a work item
• “work group”: consists of multiple work items. typically maps to an CU.

the __local  memory in OpenCL applies to this.
• “compute task”: a set of work groups

OpenCL and other APIs let you specify both the number of work groups and
work items.

Since a program might specify a higher number of work items per work group
than we have available, the compiler needs to be able to put multiple work
items onto one SIMD lane.
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Our own architecture
We’ll go with these specs for now:
• N compute units
• 2 waves per CU
• 32 lanes per wave.
• 1KiB local memory per lane => 64 KiB
• 48 vector registers of 16x32b per wave
• one scalar unit per CU
• 128 global memory ports
• 16 async task completion “signal” slots per wave
• no fancy out of order or superscalar execution
• support standard 32 bit floating point, without exceptions.

Note that we won’t specify the exact instruction encoding.

Predefined Constants
We will pre-define 16 constants (as virtual vector registers):
• zero

• one

• sid : 0,1,2,3,4,5,6
• wave : the ID of the wave in the compute task, broadcasted to all
elements.

• u8_max : 255,255,…
• n2nd : 1,2,1,2,…
• n3rd : 1,2,4,1,…
• n4th : 1,2,4,8,1,…
• lo16 : 1,1,1,… (x16) 0,0,0,… (x16)
• ch2 : 1,1,0,0,1,1,…
• ch4 : 1,1,1,1,0,0,0,0,1,…
• alo8 : 1 (x8) 0 (x8) 1 (x8) 0 (x8)
• a few reserved ones
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Operands
We define the following instruction operands:
• Vreg : vector register
• M : (read only) vector gp reg as mask (1b). only first 32 registers can
be used as mask. the operand consists of two masks and-ed together, each
of which can conditionally be inverted first. this means that this
operand takes up 12 bits

• Vany : Vreg  or M

• Simm : immediate scalar value
• Sreg : the first element of a vector register, as scalar
• Sany : a Simm  or an Sreg

• dist : Vany , or a Sany  broadcasted to each element
• sig : one of the 16 completion signal slots

Instructions
We will add more instructions in future articles.

Data Movement

• fn mov(out out: Vreg, in wrmask: M, in val: dist)

• fn select(out out: Vreg, in select: M, in false: dist, in true: dist)

• fn first_where_true(out out: Sreg, in where: M, in values: dist) : if none of the
elements are true, it doesn’t overwrite the previous value in out.

• cross-lane operations: not important for this article

Mathematics

• simple (unmasked) u32 , i32 , and f32  elementwise arithmetic and logic

operations: fn add<u32>(out out: Vreg, in left: Vany, in right: dist)

• scalar arithmetic and logic operations:

fn add<u32>(out out: Sreg, in left: Sany, in right: Sany)

• partial reduction operations: “chunks” the input with a size of 8,
reduces each chunk, and stores it in the first element of the chunk. this
means that every 8th element will contain a partial result.

• and operations to finish that reduction into the first element of the
vector
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Local memory

• load 32 bit value at each elem where mask is true:

fn local_load32(out out: Vreg, in mask: M, in addr: Vreg)

• store 32 bit value at each elem where mask is true:

fn local_store32(in addr: Vreg, in mask: M, in val: Vany)

Global (async) memory

• start an async global load, and make the given signal correspond to the
completion of the access: load 32 bit value at each elem where mask is

true: fn global_load32(out sig: sig, out out: Vreg, in mask: M, in addr: Vreg)

• see above and local_store32

fn global_store32(out sig: sig, in addr: Vreg, in mask: M, in val: Vany)

• fn sig_done1(out r: Sreg, in sig: sig)

• fn sig_done2(out r: Sreg, in sig1: sig, in sig2: sig)

• fn sig_wait(out r: Sreg, in sig: sig)

• fn sig_waitall2(out r: Sreg, in sig1: sig, in sig2: sig)

• fn sig_waitall3(out r: Sreg, in sig1: sig, in sig2: sig, in sig3: sig)

• fn sig_waitall4(out r: Sreg, in sig1: sig, in sig2: sig, in sig3: sig, in sig4: sig)

As a future extension, we could add a instruction that waits for any of the
given signals to complete, and then jump to a specific location, depending
on which of those completed.

Control flow (whole wave)

• branch if scalar is zero: fn brz(in dest: Simm, in val: Sany)

• branch if scalar is not zero: fn brnz(in dest: Simm, in val: Sany)

• branch on the whole wave if each element has a true value for the mask:

fn br_all(in dest: Simm, in cond: M)

• branch on the whole wave if any element has a true value for the mask:

fn br_any(in dest: Simm, in cond: M)
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Hand-compiling code
Now that we decided on a simple compute-only GPU architecture, we can try
hand-compiling an OpenCL program.

I asked an LLM to produce a N*N matmul example (comments written manually):

// convenient number for our specifc hardware
#define TILE_SIZE 8

// this kernel will be launched with dimensions:
//   global[2] = { 128,128 } = { N, N };
//   local[2]  = { 8,8 } = { TILE_SIZE, TILE_SIZE };
__kernel void matmul_tiled(
  __global float* A,
  __global float* B,
  __global float* C,
  const int N)
{
  int row = get_global_id(1); // y
  int col = get_global_id(0); // x
  int local_row = get_local_id(1); // y
  int local_col = get_local_id(0); // x

  __local float Asub[TILE_SIZE][TILE_SIZE];
  __local float Bsub[TILE_SIZE][TILE_SIZE];

  float sum = 0.0f;

  for (int t = 0; t < N / TILE_SIZE; ++t) {
    // load tiles into local
    int tiledRow = row;
    int tiledCol = t * TILE_SIZE + local_col;
    float av;
    if (tiledRow < N && tiledCol < N)
      av = A[tiledRow * N + tiledCol];
    else
      av = 0.0f;
    Asub[local_row][local_col] = av;

    tiledRow = t * TILE_SIZE + local_row;
    tiledCol = col;
    float bv;
    if (tiledRow < N && tiledCol < N)
        bv; = B[tiledRow * N + tiledCol];
    else
        bv = 0.0f;
    Bsub[local_row][local_col]= bv;

    // sync local access across local grp
    barrier(CLK_LOCAL_MEM_FENCE);

    for (int k = 0; k < TILE_SIZE; ++k)
        sum += Asub[local_row][k] * Bsub[k][local_col];

    // sync local access across local grp
    barrier(CLK_LOCAL_MEM_FENCE);
  }

  if (row < N && col < N)
    C[row * N + col] = sum;
}
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First, we have to decide on how we want to map the kernel to the hardware.

Since the local dimension of the kernel is 8*8, which is 64, we can map
each local group to one CU, by mapping 32 kernels to one wave, and using
both waves available on one CU for the local group.

Our global dimension is 128*128, which means that we would need 256 compute
units. But since we probably don’t have 256 compute units, GPUs, including
ours, will have a on-hardware task scheduler, for scheduing tasks onto
compute units.

Outro
Modern GPUs are really complex, but designing a simple GPU is not that hard
either.

Subscribe to the Atom feed4 to get notified of future articles.
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