
Automatically inlining functions
is not easy
Git revision #9c2913af1

Modified at 11. August 2025 16:38

Written by alex_s1682

Introduction
Function calls have some overhead, which can sometimes be a big issue for
other optimizations. Because of that, compiler backends (should) inline
function calls. There are however many issues with just greedily inlining
calls…

Greedy inlining with heuristics
This is the most obvious approach. We can just inline all functions with
only one call, and then inline calls where the inlined function does not
have many instructions.

Example:

function f32 $square(f32 %x) {
@entry:
 // this is stupid, but I couldn't come up with a better example
 f32 %e = add %x, 0
 f32 %out = add %e, %x
 ret %out
}

function f32 $hypot(f32 %a, f32 %b) {
@entry:
 f32 %as = call $square(%a)
 f32 %bs = call $square(%b)
 f32 %sum = add %as, %bs
 f32 %o = sqrt %sum
 ret %o
}

function f32 $tri_hypot({f32, f32} %x) {
 f32 %a = extract %x, 0
 f32 %b = extract %x, 1
 f32 %o = call $hypot(%a, %b) // this is a "tail call"
 ret %o
}

// let's assume that $hypot is used someplace else in the code too

1https://github.com/alex-s168/website/tree/9c2913af189b62c028f6f773370f50f9e6c13307
2https://alex.vxcc.dev

1 of 4

https://github.com/alex-s168/website/tree/9c2913af189b62c028f6f773370f50f9e6c13307
https://alex.vxcc.dev
https://github.com/alex-s168/website/tree/9c2913af189b62c028f6f773370f50f9e6c13307
https://alex.vxcc.dev

Let’s assume our inlining treshold is 5 operations. Then we would get –
Waait there are multiple options…

Issue 1: (sometimes) multiple options

If we inline the $square calls, then $hypot will have too many

instructions to be inlined into $tri_hypot :

...
function f32 $hypot(f32 %a, f32 %b) {
@entry:
 // more instructions than our inlining treshold:
 f32 %ase = add %a, 0
 f32 %as = add %ase, %a
 f32 %bse = add %b, 0
 f32 %bs = add %bse, %b
 f32 %sum = add %as, %bs
 f32 %o = sqrt %sum
 ret %o
}
...

The second option is to inline the $hypot call into $tri_hypot . (There are
also some other options)

Now in this case, it seems obvious to prefer inlining $square into $hypot .

Issue 2: ABI requirements on argument passing
If we assume the target ABI only has one f32 register for passing
arguments, then we would have to generate additional instructions for

passing the second argument of $hypot , and then it might actually be more

efficient to inline $hypot instead of $square .

This example is not realistic, but this issue actually occurs when
compiling lots of code.

Another related issue is that having more arguments arranged in a fixed way
will require lots of moving data arround at the call site.

A solution to this is to make the heuristics not just output code size, but
also make it depend on the number of arguments / outputs passed to the
function.

2 of 4

Issue 3: (sometimes) prevents optimizations

function f32 $myfunc(f32 %a, f32 %b) {
@entry:
 f32 %sum = add %a, %b
 f32 %sq = sqrt %sum
 ...
}

function $callsite(f32 %a, f32 %b) {
@entry:
 f32 %as = add %a, %a
 f32 %bs = add %b, %b
 f32 %x = call $myfunc(%as, %bs)
 ...
}

If the target has a efficient hypot operation, then that operation will

only be used if we inline $myfunc into $callsite .

This means that inlining is now depended on… instruction selection??

This is not the only optimization prevented by not inlining the call. If

$callsite were to be called in a loop, then not inlining would prevent
vectorization.

Function outlining
A related optimization is “outlining”. It’s the opposite to inlining. It
moves duplicate code into a function, to reduce code size, and sometimes
increase performance (because of instruction caching)

If we do inlining seperately from outlining, we often get unoptimal code.

A better approach
We can instead first inline all inlinable calls, and then perform more
agressive outlining.

Step 1: inlining
We inline all function calls, except for:
• self recursion (obviously)
• functions explicitly marked as no-inline by the user

3 of 4

Step 2: detect duplicate code
There are many algorithms for doing this.

The goal of this step is to both:
• maximize size of outlinable section
• minimize size of code

Step 3: slightly reduce size of outlinable section
The goal is to reduce size of outlinable sections, to make the code more
optimal.

This should be ABI and instruction depended, and have the goal of:
• reducing argument shuffles required at all call sites
• reducing register preassure
• not preventing good isel choices and optimizations.

this is also dependent on the targetted code size.

Step 4: perform outlining
This is obvious.

Issue 1: high compile-time memory usage
Inlining all function calls first will increase the memory usage during
compilation by A LOT

I’m sure that there is a smarter way to implement this method, without
actually performing the inlining…

Conclusion
Function inlining is much more complex than one might think.

PS: No idea how to implement this…

Subscribe to the Atom feed3 to get notified about futre compiler-related
articles.

3atom.xml

4 of 4

atom.xml
atom.xml

	Introduction
	Greedy inlining with heuristics
	Issue 1: (sometimes) multiple options
	Issue 2: ABI requirements on argument passing
	Issue 3: (sometimes) prevents optimizations

	Function outlining
	A better approach
	Step 1: inlining
	Step 2: detect duplicate code
	Step 3: slightly reduce size of outlinable section
	Step 4: perform outlining
	Issue 1: high compile-time memory usage

	Conclusion

