
Approaches to pattern matching
in compilers
Git revision #34fd6adb1

Modified at 19. August 2025 09:55

Written by alex_s1682

Introduction
Compilers often have to deal with pattern matching and rewriting (find-and-
replace) inside the compiler IR (intermediate representation).

Common use cases for pattern matching in compilers:
• “peephole optimizations”: the most common kind of optimization in
compilers. They find a short sequence of code and replace it with some

other code. For example replacing x & (1 << b) with a bit test operation.
• finding a sequence of operations for complex optimization passes to
operate on: advanced compilers have complex optimizations that can’t
really be performed with simple IR operation replacements, and instead
require complex logic. Patterns are used here to find operation sequences
where those optimizations are applicable, and also to extract details
inside that sequence.

• code generation: converting the IR to machine code / VM bytecode. A
compiler needs to find operations (or sequences of operations) inside the
IR, and “replace” them with machine code.

Simplest Approach
Currently, most compilers mostly do this inside their source code. For
example, in MLIR, most (but not all) pattern matches are performed in C++
code.

The only advantage to this approach is that it doesn’t require a complex
pattern matching system.

I only recommend doing this for small compiler toy projects.

1https://github.com/alex-s168/website/tree/34fd6adb3c89bef3f2d18b06b24533b52641bf4a
2https://alex.vxcc.dev

1 of 8

https://github.com/alex-s168/website/tree/34fd6adb3c89bef3f2d18b06b24533b52641bf4a
https://alex.vxcc.dev
https://github.com/alex-s168/website/tree/34fd6adb3c89bef3f2d18b06b24533b52641bf4a
https://alex.vxcc.dev

Disadvantages
Doing pattern matching this way has many disadvantages.

Some (but not all):
• debugging pattern match rules can be hard
• IR rewrites need to be tracked manually (for debugging)
• source locations and debug information also need to be tracked manually,
which often isn’t implemented very well.

• verbose and barely readable pattern matching code
• overall error-prone

I myself did pattern matching this way in my old compiler backend, and I
speak from experience when I say that this approach sucks (in most cases).

Pattern Matching DSLs
A custom language for describing IR patterns and IR transformations (aka
rewrites).

I will put this into the category of “structured pattern matching”.

An example is Cranelift’s ISLE DSL:

;; x ^ x == 0.
(rule (simplify (bxor (ty_int ty) x x))
 (subsume (iconst_u ty 0)))

Another example is tinygrad’s pattern system:

(UPat(Ops.AND, src=(
 UPat.var("x"),
 UPat(Ops.SHL, src=(
 UPat.const(1),
 UPat.var("b")))),
 lambda x,b: UOp(Ops.BIT_TEST, src=(x, b)))

Fun fact: tinygrad actually decompiles the python code inside the second
element of the pair, and runs multiple optimization passes on that.

This approach is used by many popular compilers such as LLVM, GCC, and
Cranelift for peephole optimizations and code generation.

2 of 8

Advantages
• debugging and tracking of rewrites, source locations, and debug
information can be done properly

• patterns themselves can be inspected and modified programmatically.
• they are easier to use and read than manual pattern matching in the
source code.

There is however an even better alternative:

Pattern Matching Dialects
I will also put this method into the category of “structured pattern
matching”.

The main example of this is MLIR, with the pdl and the transform dialects.
Sadly few projects/people use these dialects, and instead do pattern
matching in C++ code. Probably because the dialects aren’t documented very
well.

What are compiler dialects?
Modern compilers, especially multi-level compilers, such as MLIR, have
their operations grouped in “dialects”.

Each dialect either represents specific kinds of operations, like
arithmetic operations, or a specific backend’s/frontend’s operations, such

as the llvm , emitc , and the spirv dialects in MLIR.

Dialects commonly contain operations, data types, as well as optimization
and dialect conversion passes.

Core Concept
The IR patterns and transformations are represented using the compiler’s
IR. This is mostly done in a separate dialect, with dedicated operations
for operating on IR.

3 of 8

Examples

MLIR’s pdl dialect can be used to replace arith.addi with my.add like
this:

pdl.pattern @replace_addi_with_my_add : benefit(1) {
 %arg0 = pdl.operand
 %arg1 = pdl.operand
 %op = pdl.operation "arith.addi"(%arg0, %arg1)

 pdl.rewrite %op {
 %new_op = pdl.operation "my.add"(%arg0, %arg1) -> (%op)
 pdl.replace %op with %new_op
 }
}

Advantages
• the pattern matching infrastructure can optimize it’s own patterns: The
compiler can operate on patterns and rewrite rules like they are normal
operations. This removes the need for special infrastructure regarding
pattern matching DSLs.

• the compiler could AOT compile patterns
• the compiler could optimize, analyze, and combine patterns to reduce
compile time.

• IR (de-)serialization infrastructure in the compiler can also be used to
exchange peephole optimizations.

• bragging rights: your compiler represents its patterns in it’s own IR

Combining with a DSL
I recommend having a pattern matching / rewrite DSL, that transpiles to
pattern matching / rewrite dialect operations.

The advantage of this over just having a rewrite dialect is that it makes
patterns even more readable (and maintainable!)

E-Graphs
E-Graphs3

are magical datastructures that can be used to efficiently encode all
possible transformations, and then select the best transformation.

An example implementation is egg4

Even though E-Graphs solve most problems, I still recommend using a pattern
matching dialect, especially in multi-level compilers, to be more flexible,
and have more future-proof pattern matching, or you decide that you want to
match some complex patterns manually.

3https://en.wikipedia.org/wiki/E-graph

4 of 8

https://en.wikipedia.org/wiki/E-graph
https://egraphs-good.github.io/
https://en.wikipedia.org/wiki/E-graph

More Advantages of Structured Pattern Matching

Smart Pattern Matchers
Instead of brute-forcing all peephole optimizations (of which there can be
a LOT in advanced compilers), the compiler can organize all the patterns to
provide more efficient matching. I didn’t yet investigate how to do this.
If you have any ideas regarding this, please contact me.5

There are other ways to speed up the pattern matching and rewrite process
using this too.

Reversible Transformations
I don’t think that there currently is any compiler that does this. If you
do know one, again, please contact me.

Optimizing compilers typically deal with code (mostly written by people)
that is on a lower level than the compiler theoretically supports. For
example, humans tend to write code like this for extracting a bit:

x & (1 << b) , but compilers tend to have a high-level bit test operation
(with exceptions). A reason for having higher-level primitives is that it
allows the compiler to do more high-level optimizations, but also some
target architectures have a bit test operation, that is more optimal.

This is not just the case for “low-level” things like bit tests, but also
high level concepts, like a reduction over an array, or even the
implementation of a whole algorithm. For example LLVM, since recently, can
detect implementations of CRC.6

LLVM actually doesn’t have many dedicated operations like a bit-test
operation, and instead canonicalizes all bit-test patterns to

x & (1 << b) != 0 , and matches for that in compiler passes that expect bit
test operations.

Now let’s go back to the x & (1 << b) (bit test) example. Optimizing
compilers should be able to detect that, and other bit test patterns (like

x & (1 << b) > 0), and then replace those with a bit-test operation. But
they also have to be able to convert bit-test operations back to their
implementation for compilation targets that don’t have a bit-test
instruction. Currently, compiler backends do this by having separate
patterns for converting bit-test to it’s dedicated operation, and back.

4https://egraphs-good.github.io/
5https://alex.vxcc.dev
6https://en.wikipedia.org/wiki/Cyclic_redundancy_check

5 of 8

https://alex.vxcc.dev
https://alex.vxcc.dev
https://en.wikipedia.org/wiki/Cyclic_redundancy_check
https://egraphs-good.github.io/
https://alex.vxcc.dev
https://en.wikipedia.org/wiki/Cyclic_redundancy_check

A better solution is to associate a set of implementations with the bit
test operation, and make the compiler automatically reverse those to
generate the best implementation (in the instruction selector for example).

Implementing pattern/transformation reversion can be challenging however,
but it provides many benefits, and all “big” compilers should definitely do
this, in my opinion.

Runtime Library
Compilers typically come with a runtime library that implement more complex
operations that aren’t supported by most processors or architectures.

The implementation of those functions should also use that pattern matching
dialect. This allows your backend to detect code written by users with a
similar implementation as in the runtime library, giving you some
additional optimizations for free.

I don’t think any compiler currently does this either.

Problems with Pattern Matching
The main problem is ordering the patterns.

As an example, consider these three patterns:

;; A
(add x:Const y) => (add y x)

;; B
(sub (add x y:Const) z:Const) => (lea x y (const_neg z))

;; C
(add x 1) => (inc x)

Now what should the compiler do when it sees this:

(sub (add 5 1) 2)

6 of 8

All three patterns would match:

;; apply A
(sub (add 5 1) 2) => (sub (add 1 5) 2)
;; only B applies now
(sub (add 1 5) 2) => (lea 1 5 (const_neg 2))
;; nothing applies anymore

;; alternatively apply B
(sub (add 5 1) 2) => (lea 5 1 (const_neg 2))
;; nothing applies anymore

;; atlernatively apply C
(sub (add 5 1) 2) => (sub (inc 5) 2)
;; nothing applies anymore

Now which of those transformations should be performed?

This is not as easy to solve as it seems, especially in the context of
instruction selection (specifically scheduling), where the performance on
processors depends on a sequence of instructions, instead of just a single
instruction.

Superscalar CPUs
Modern processor architecture features like superscalar execution make this
even more complicated.

As a simple, unrealistic example, let’s imagine a CPU (core) that has one
bit operations execution unit, and two ALU execution units / ports.
This means that the CPU can execute two instructions in the ALU unit and
one instruction in the bit ops unit at the same time.

One might think that always optimizing a & (1 << b) to a bit test operation
is good for performance. But in this example, that is not the case.

If we have a function that does a lot of bitwise operations next to each
other, and the compiler replaces all bit tests with bit test operations,
suddenly all operations depend on the bit ops unit, which means that
instead of executing 3 instructions at a time (ignoring pipelining), the
CPU can only execute one instruction at a time.

This shows that we won’t know if an optimization is actually good, until we
are at a late point in the compilation process where we can simulate the
CPU’s instruction scheduling.

This does not only apply to instruction selection, but also to more higher-
level optimizations, such as loop and control flow related optimizations.

7 of 8

Conclusion
One can see how pattern matching dialects are the best option to approach
pattern matching.

Someone wanted me to insert a takeaway here, but I won’t.

PS: I’ll hunt down everyone who still decides to do pattern matching in
their compiler source after reading this article.

8 of 8

	Introduction
	Simplest Approach
	Disadvantages

	Pattern Matching DSLs
	Advantages

	Pattern Matching Dialects
	What are compiler dialects?
	Core Concept
	Examples
	Advantages
	Combining with a DSL
	E-Graphs

	More Advantages of Structured Pattern Matching
	Smart Pattern Matchers
	Reversible Transformations
	Runtime Library

	Problems with Pattern Matching
	Superscalar CPUs

	Conclusion

