Files
beginner-friendly-lang/spec.md
2025-09-15 16:15:23 +02:00

666 lines
17 KiB
Markdown

# Contribution Guidelines
- explain why design decisions are taken
- put in `TODO`s into the specification for things that should be re-visited in the future
# Goals
- functional programming: everything is pure, and only a function
- easy to learn, even as first programming language
- only one way of doing things. not 20. Eg: onle list type, instead of 20
- pretty easy to implement
# Data types
One of:
- `t -> t`: pure function taking `t` as argument, and returning `t`
- `{ field1: xt, field2: yt }`: non-nominal records
- `'Case1 t | 'Case2 t2 | 'Case3 t3`: tagged unions
- `with myGenericName: x`: introduce "generic" type `myGenericName`, which can be used in type `x`
- `&a 'EOL | 'Cons {v: t, next: a}`: [recursive type](##recursive-types)
- `?Identifier`: the partial type `Identifier`
- `'Case1 t1 | 'Case2 t2 | ...?Identifier`: partial tagged union type, `Identifier`
- `{field1: xt, field2: yt, ...?Identifier}`: partial non-nominal record type, `Identifier`
## Recursive types
Recursive / self-referential types
These are not allowed to have an infinite size, for example these are illegal:
```
type Illegal1 = &a a
type Illegal2 = &a {x: a, y: Int8}
```
The definition of "infinite size" is:
- for records: if _any_ of the field types has "infinite size"
- for unions: if _all_ of the cases has "infinite size"
- for functions: never
- for recursive types:
- if the type was already visited: yes
- otherwise: if the inner type has "infinite size"
## Partial types
These are types where the full definition is somewhere else (eg another compilation unit)
This type naturally adds limitations:
- for partial non-nominal records: these can not be constructed with the record construct expression
- for partial unions: they can not be pattern matched exhaustively
these limitations are removed, if the full definition is in the current scope
<details>
<summary>Example</summary>
Compilation unit 1:
```
type ?Uint8 = {field:type}
type Uint8 = {...?Uint8}
# this compilation does not have the limitations of partial types, because the definition for `?Uint8` is available
```
Compilation unit 2:
```
type Uint8 = {...?Uint8}
```
</details>
## Syntax
TODO ebnf
## Compatible-with
Check if type is compatible-with / assignable-to type requirements.
- a type is compatible with itself ofcourse
- a tagged union is compatible with anothr,
if the other one contains at least all cases from this union,
and those cases are compatible
- a non-nominal record is compatbile with anohter,
if the other one contains a _subset_ of the fields of this one,
and the field types are comptible.
- a type is compatible with a partial type `?Ty`,
if the definition of the partial type is in the current scope,
and the type is compatible with the type inside the definition
- partial records and unions are similar to the above.
TODO: need more details?
## Phi unification
This process is performed on the resulting types of two merging branches
Tries, in order:
- if one of the types is a tagged union,
which contains only one case with an identical type,
and the other is not a tagged union,
it will "attach" that case onto the other type, like this:
`'N Num | 'I Int` and `Num` -> `'N Num | 'I Int`
- if one of the types is a tagged union with exactly one case,
and the other one is not an union,
it will put that tag onto it, and phi-merge the inner types.
example: `'N Num` and `Num` -> `'N Num`
- if both types are tagged unions,
the result is an tagged union contain the csaes of both tagged unions.
union cases that are in both branches, will have their types phi-unified too.
example: `'Ok ('N Num | 'I Int) | 'SomeErr` and `'Ok Num | 'AnotherErr` -> `'Ok ('N Num) | 'SomeErr | 'AnotherErr`
- if both types are non-nominal records,
the result will contain only fields that are present in both types.
The types of the fields will get phi-unified too
example: `{a:Num,b:Num,c:Num}` and `{a:Num,c:Num,e:Num}` -> `{a:Num, e:Num}`
# "Platform library"
Depends on on the [core library](#core-library).
Platform / language implementation / target depedent.
<details>
<summary>Signature</summary>
```
############ Primitive Data types ############
type Uint8
def Uint8.wrapping_add : Uint8 -> Uint8 -> Uint8
def Uint8.bitwise_not : Uint8 -> Uint8
def Uint8.less_than : Uint8 -> Uint8 -> Bool
def Uint8.bits : Uint8 -> {7:Bool,6:Bool,5:Bool,4:Bool,3:Bool,2:Bool,1:Bool,0:Bool}
```
</details>
# "Core library"
Depend on the [platform library](#platform-library).
Completely platform, language implementation, and target independent.
<details>
<summary>Signature</summary>
```
type Unit = {}
######### Primitive storage-only types ##########
type Int8 = Uint8
type Int16 = {hi:Int8, lo:Int8}
type Int32 = {hi:Int16, lo:Int16}
type Int64 = {hi:Int32, lo:Int32}
type Int128 = {hi:Int64, lo:Int64}
############ Bool ############
type Bool = 'True | 'False
def Bool.not : Bool -> Bool
def Bool.and : Bool -> Bool -> Bool
def Bool.or : Bool -> Bool -> Bool
def Bool.nor : Bool -> Bool -> Bool
def Bool.xor : Bool -> Bool -> Bool
############ Num ############
## arbitrary-precision signed decimal number
type Num
def Num.toStr : Num -> Char List
# consider using locale aware, and space ignoring parsing instead
# parses of format 123 / -123 / 123.456
def Num.parseLit : Char List -> Num Option
def Num.zero : Num
def Num.one : Num
def `a+b` : Num -> Num -> Num
def `a-b` : Num -> Num -> Num
def `a*b` : Num -> Num -> Num
def `a/b` : Num -> Num -> Num
def Num.neg : Num -> Num
############ Char ############
# one unicode codepoint
type Char
def Char.toAscii : Char -> Uint8 Option
def Char.fromAscii : Uint8 -> Char Option
def Char.encodeUtf8 : Char -> Uint8 List
def Char.decodeUtf8 : Uint8 List -> 'Cons {v: Char, next: Uint8 List}
############ String ############
def String.encodeUtf8 : Char List -> Utf8 List
def String.decodeUtf8 : Uint8 List -> 'Ok Char List | 'Err {at: Num}
############ t List ############
## A generic linked-list type
type t List = 'EOL | 'Cons {v: t, next: t List}
## List concatenate
def `a++b` : t List -> t List -> t List
## Get nth element
def List.nth : t List -> Num -> t Option
############ t Option ############
type t Option = 'None | 'Some t
```
</details>
<details>
<summary>Reference Implementation</summary>
TODO
</details>
# "Standard library"
Depend on the [platform library](#platform-library) and [core library](#core-library).
Responsible for IO
<details>
<summary>Signature</summary>
```
############ IO ############
type t IO
def IO.just : t -> t IO
def IO.chain : t IO -> (t -> r IO) -> r IO
############ Stream ############
# represents a non-seekable t-stream, for example a tcp stream
type t io.Stream
TODO: networking api: stream and datagram protocols
############ Path ############
# paths are not absolute, but rather relative to any reference point
type io.Path = {parent: io.Path Option, ...?io.Path}
def io.Path.eq : io.Path -> io.Path -> Bool
def io.Path.root : io.Path -> io.Path
def io.Path.child : io.Path -> Char List -> io.Path Option
TODO: links, permissions, ... etc
############ File ############
type io.ReadFile
type io.WriteFile
type t io.FileOpenResult = 'Ok t | 'CantReopenThis | 'FileNotFound | 'PermissionError | 'OtherErr
def io.file.open.r : io.Path -> io.ReadFile io.FileOpenResult
def io.file.open.w : io.Path -> io.WriteFile io.FileOpenResult
def io.file.open.rw : io.Path -> {r: io.ReadFile, w: io.WriteFile} io.FileOpenResult
TODO: read, write, extend, truncate
```
</details>
<details>
<summary>Implementation snippets</summary>
TODO: example definition of IO
</details>
# (top-level) declarations
TODO
TODO: add either attribute system, or comptime exec
# Mostly forward type inference
Exception 1:
```
def List.map : t List -> (t -> r) -> r List
# doesn't require specifying types in lambda: simple one-step backwards type inference
List.map([1,2,3], x -> x * 2)
```
Exception 2:
```
def add : Num -> Num -> Num =
a -> b -> a + b
# ^^^^^^
# does not require specification of those types, because already specified in function signature
# this also applies to:
def add : Num -> Num -> Num
def add = a -> b -> a + b
```
# Expressions
- `expr:field` access field from non-nominal record
- `let varName = value exprUsingTheVar`
- `'a'` unicode codepoint literal, aka "char" literal. returns a `Char`
- `[1,2,3]` list literal: creates a `t List`, where `t` is equal to the type of all the wrapped expressions
- `"Hello\\nworld"` string literal with escape characters. same behaviour as list literal of the chars
- `12.345`, or `12`, or `-12`: same behaviour as `Num.parseLit` on the value (as string)
- `arg -> value`: one-step backwards inferrable lambda
- `arg: Type -> value`
- `func(arg1, arg2)`: function application. requires at least one argument. partial function applications are allowed too
- `expr :: type`: down-cast type
- `recExpr with fieldname: newFieldValue`: overwrites or adds a field to a record type.
type checking: identical to `recExpr and {fieldname: newFieldValue}`
- `recExpr and otherRecExpr`: "sum" fields together of both record expressions.
type checking: phi-unify `recExpr` with `otherRecExpr`, and require that both are non-nominal record types
- `if cond then a else b`
- `{field1: val1, field2: val2}` field construction
- `match expr with <match cases>`: [pattern matching](##pattern-matching)
- `a = b` the [equality operator](##equality-operator)
- `a + b`: identical to `\`a+b\`(a, b)` name: "sum"
- `a - b`: identical to `\`a-b\`(a, b)` name: "difference"
- `a * b`: identical to `\`a*b\`(a, b)` name: "times"
- `a / b`: identical to `\`a/b\`(a, b)` name: "over"
- `a ++ b`: identical to `\`a++b\`(a,b)` name: "list concatenate"
- `a => b`: identical to `\`a=>b\`(a,b)` name: "lens compose"
## pattern matching
TODO
## equality operator
The only operator with type overloading
TODO
# coding patterns (for users only)
## labelled arguments
```
def List.remove_prefix(prefix: t List, list: 'from t List)
List.remove_prefix([1,2], 'from [1,2,3,4])
# but this also works most of the times:
List.remove_prefix([1,2], [1,2,3,4])
```
# OLD SPECIFICATION STARTING HERE
## automatic return types
```
def add(a: Num, b: Num) -> _ {
a + b
}
```
## templated generics
```
# Type of add is: template a, b: a -> b -> _
def [a,b] add(a: a, b: b) -> _ {
a + b
}
add(1,2)
add(1)(2) # error: partial function application of templated functions not allowed
add(1,"2") # error: in template expansion of add[Num,List[Char]]: No definition for `Num + List[Char]`
```
## pattern matching
```
type Option[t] = 'None | 'Some t
def [t] Match.`a++b`(
# matching against this value
value: List[t],
# left hand side of operator
l: List[t],
# right hand side of operator
r: MatchUtil.Var[List[t]]
) -> Option[{ r: List[t] }] {
match List.remove_prefix(l, 'from value) {
'Some rem -> 'Some { r: rem }
'None -> 'None
}
}
```
then you can do:
```
type Token = 'Public | 'Private | 'Err
def example(li: List[Char]) -> {t:Token,rem:List[Char]} {
match li {
"public" ++ rem -> {t: 'Public Unit, rem:rem}
"private" ++ rem -> {t: 'Private Unit, rem:rem}
_ -> {t: 'Err Unit, rem: li}
}
}
```
## recursive data types
```
type List[t] = 'End | 'Cons {head:t, tail:List[t]}
# now you might notice an issue with this
# `type` defines non-distinct type alisases
# so what is the type of this...
# Introducing: type self references
# the above example is the same as this:
type List[t] = &a ('End | 'Cons {head:t, tail:a})
# example 2:
# a List[List[t]] is just:
&b ('End | 'Cons {head: &a ('End | 'Cons {head:t, tail:a}), tail: b})
```
Infinitely sized types are not allowed:
```
&a {x:Num, y:a}
```
However, infinite types without size *are* allowed:
```
&a {x:a}
```
This is *not* allowed:
```
&a a
```
## module system
Each file is a "compilation unit"
When compiling a compilation unit, the following inputs have to be provided:
- any amount of files containing signatures of exported definitions.
only definitions of the compilation unit that are in one of the signature files will get exported.
- any amount of other files containing imported definitions
Note that there is no practical difference between signature and source files.
### Example
Export signature file `List.li`:
```
type List[t] = 'End | 'Cons {head:t, tail:List[t]}
# not providing a function body makes it a function signature definition
def [t] `a++b`(a: List[t], b: List[t]) -> List[t]
def [t] Match.`a++b`(
value: List[t],
l: List[t],
r: MatchUtil.Var[List[t]]
) -> Option[{ r: List[t] }]
```
Import signature file `Option.li`:
```
type Option[t] = 'None | 'Some t
```
Compilation unit `List.lu`:
```
def [t] `a++b`(a: List[t], b: List[t]) -> List[t] {
# ...
}
def [t] Match.`a++b`(
value: List[t],
l: List[t],
r: MatchUtil.Var[List[t]]
) -> Option[{ r: List[t] }] {
# ...
}
```
### Notes
Each compilation unit gets compiled to implementation-specific bytecode.
Templated functions can only be compiled partially during a compilation unit. This will impact compile speeds.
Avoid templated functions wherever possible.
## Hide record fields in module signatures
Signatue:
```
type User = {name: List[Char], ...}
# the ... is used to indicate that this is a partial type definition
# User, as given here, can not be constructed, but name can be accessed
```
Compilation unit:
```
type User = {name: List[Char], password: List[Char]}
```
## Hide union variants in module signatures
Signature:
```
type DType = 'Int | 'UInt | 'Byte | ...
# users of this can never do exhaustive pattern matching on this
```
Compilation unit:
```
type DType = 'Int | 'UInt | 'Byte
# this compilation unit can actually do exhaustive pattern matching on this
```
## Note on hidden union variants / record fields
To make these work, the following is legal:
```
def example() -> 'Int | 'UInt | ...
def example() -> 'Int | 'UInt | 'Byte | 'Char {
# ...
}
```
## Extensible unions
```
extensible union Plan
extend Plan with 'ReadlnPlan Unit
extend Plan with 'WritelnPlan Unit
# pattern matching against these is always non-exhaustive.
# can only pattern match with the imported extensions
```
## Any type
in the stdlib:
```
extensible union Any
type Any.LambdaCalc = 'Apply {fn: Any.LambdaCalc, arg: Any.LambdaCalc}
| 'Scope {idx: Uint}
| 'Abstr {inner: Any.LambdaCalc}
def Any.toLambda(a: Any) -> Any.LambdaCalc
```
It gets automatically extended with every type ever used.
## Lenses
In the stdlib:
```
type Lens[t,f] = {get: t -> f, set: t -> f -> t}
def [a,b,c] `a=>b`(x: Lens[a,b], y: Lens[b,c]) -> Lens[a,c] {
{
get: t:a -> y:get(x:get(t)),
set: t:a -> f:c -> x:set(t, y:set(x:get(t), f))
}
}
```
Since `a:f1:f2` is the field access syntax, the lens creation syntax is similar: `&Type:field1:field2`
So you can do:
```
type Header = {text: String, x: Num}
type Meta = {header: Header, name: String}
&Header:header:text (myHeader, "new meta:header:text value")
# which is identical to:
(&Header:header => &Meta:text) (myHeader, "new meta:header:text value")
```
However, it is cleaner to use `with`:
```
myHeader with header:text: "new meta:header:text value"
```
## Pure IO
the `IO[t]` type contains IO "plans" which will be executed by the runtime, if they are returned by the main function.
```
def main() -> IO[Unit] {
print("hey") # warning: result (of type IO[Unit]) was ignored. expression can be removed
print("hello")
}
# this will only print "hello"
```
To make the above example print both "hey" and "hello", we need to chain the two IO types:
```
def main() -> IO[Unit] {
await _ = print("hey")
await print("hello")
}
# or just remove the _
def main() -> IO[Unit] {
await print("hey")
await print("hello")
}
# if you don't put in the second await:
def main() -> IO[Unit] {
await print("hey")
print("hello")
# error: expected IO[Unit], got IO[IO[Unit]]; did you forget an `await`?
}
```
await is kinda weird. here is the syntax:
```
# ( await x: a = ( expr1::IO[a] ) await (expr2::IO[b]) ) :: IO[b]
expr |= 'await', (identifier, '='), expr, 'await', expr
# ( await x: a = ( expr1::IO[a] ) ( expr2::b ) ) :: IO[b]
expr |= 'await', (identifier, '='), expr, expr
# ( await (expr1::a) ) :: a
expr |= 'await', expr
```
## Pure IO implementation
Something like this is done in the stdlib:
```
extensible union IO.Plan[r]
type IO[t] = 'Just {value: t}
| 'Map template r: {of: IO[r], map: r -> IO[t]}
| 'More template r: {plan: IO.Plan[r], then: r -> IO[t]}
def [a,b] `await a (a->b)`(io: IO[a], then: a -> b) -> IO[b] {
'Map {of: io, map: r -> 'Just {value: then(r)}}
}
def [a,b] `await a (a->await b)`(io: IO[a], then: a -> IO[b]) -> IO[b] {
'Map {of: io, map: r -> then(r)}
}
# in stdio:
extend IO.Plan[Uint8] with 'stdio.ReadByte {stream: Int32}
def stdio.getchar : IO[Uint8] = 'More {plan: 'stdio.ReadByte {stream: 0}, then: by -> 'Just by[0]}
def main() -> IO[Unit]
```
the runtime does something like this:
```
def [a] RUNTIME_EVAL(io: IO[a]) -> a {
match io {
'Just {value} -> value
'Map {of, map} -> RUNTIME_EVAL(map(RUNTIME_EVAL(of)))
'More {plan, then, finally} -> RUNTIME_EVAL(then(match plan {
'ReadStream {stream} -> 'ReadStreamIOResult {data: impure perform the io here lol}
_ -> impure error here "this runtime doesn't support this kind of IO" or sth
}))
}
}
def RUNTIME_ENTRY() {
RUNTIME_EVAL ( main() )
}
```