5.2 KiB
5.2 KiB
Arithmetic
1.2 * 4 + 1
# result: 5.8
Few types to learn
Most important ones:
Num
: big-decimalList[T]
: (linked-) list ofT
Char
: unicode codepointUnit
: nothingEnd
: unreachableCell[T]
: mutable cell ofT
Advanced (uncommon) types:
Int8
,Int16
, ...Uint8
, ...Flt32
,Flt64
Functions
def msg(username: List[Char]) : List[Char] {
"Hello, " ++ username ++ "!" # last expr is returned
}
def main() {
print("hi")
}
main()
Simple, forward type-inference
def zero () : Flt32 {
3.1 # error: got Num, but expected F32
}
Bindings
let name = "Max"
let passw = "1234"
Mutability only via ref
let value = Cell.from(1)
print(Num.to_str(!value)) # !cell "observes" the cell
value := 2 # `:=` mutates the cell
print(Num.to_str(!value))
no confusing function or operator overloading
all operators:
Num + Num
(has overloads for fixed width number types)Num - Num
(has overloads for fixed width number types)Num * Num
(has overloads for fixed width number types)Num / Num
(has overloads for fixed width number types)Num ^ Num
: raise to the power (has overloads for fixed width number types)List[t] ++ List[t]
: list concatenationvalue :: t
(explicitly specify type of value, useful for down-casting structs, or just code readability; does not perform casting)list[index]
!cell
: "observe" a mutable valuecell := value
: mutate a mutable value
non-nominal struct types
# `type` creates a non-distinct type alias
type User = { name: List[Char] }
type DbUser = { name: List[Char], pass: List[Char] }
def example(u: User) : DbUser {
u with pass: "1234"
# has type { name: List[Char], pass: List[Char] }
}
def example2() : {name: List[Char], pass: List[Char]} {
{name:"abc", pass:"123"}
}
def example3() : User {
example2() # {name:.., pass:...} can automatically decay to {name:...}
}
(tagged) union types
type Option[t] =
'Err # If no type specified after tag, defaults to Unit
| 'Some t
# the tags of unions are weakly attached to the types, but won't decay unless they have to
def example(n: Num) : Num {
let x = 'MyTag n # type of x is 'MyTag Num
x # tag gets removed because target type is Num
}
def example2(n: Num) : Option[Num] {
'Some n
}
def example3-invalid() : Option[Num] {
Unit # error: can't convert type `Unit` into type `'Err Unit | 'Some Num`
# Either label the expression with 'Err,
# or change the return type to Option[Unit], and label the expression with 'Some
}
def exampe4(): Option[Num] {
'Err Unit
# type of this expression is: `'Err Unit`
# enums can automatically cast, if all the cases from the source enum also exists in the target enum,
# which they do here: `'Err Unit` is a case in `'Err Unit | Num`
}
def example5-error(): Option[Num] {
let x = ( 'Err Unit ) :: Option[Unit]
x
# error: can't convert type `'Err Unit | 'Some Unit` into type `'Err Unit | 'Some Num`
# The case `'Some Unit` does not exist in the target `'Err Unit | 'Some Num`
}
def example6-error(): Option[Unit] {
let x = 'Error Unit
x
# in this case, the enum tag does not decay, like in `example`,
# because we are casting to an enum
# error: can't convert type `'Error Unit` into type `'Err Unit | 'Some Num``
# 1st possible solution: manually cast to just `Unit` (via `expr :: Unit`), so that it can convert to the second case of the target
# 2nd possible solution: pattern match against the enum, to rename the tag from 'Error to 'Err
}
pattern 1: labelled arguments
def [t] List.remove_prefix(prefix: List[t], list: 'from List[t])
automatic return types
def add(a: Num, b: Num) -> _ {
a + b
}
templated generics
def [a,b] add(a: a, b: b) -> _ {
a + b
}
add(1,2)
add(1,"2") # error: in template expansion of add[Num,List[Char]]: No definition for `Num + List[Char]`
pattern matching
type Option[t] = 'None | 'Some t
def [t] Match.`a++b`(
# matching against this value
value: List[t],
# left hand side of operator
l: List[t],
# right hand side of operator
r: MatchUtil.Var[List[t]]
) -> Option[{ r: List[t] }] {
match List.remove_prefix(l, 'from value) {
'Some rem -> 'Some { r: rem }
'None -> 'None
}
}
then you can do:
type Token = 'Public Unit | 'Private Unit | 'Err Unit;
def example(li: List[Char]) -> {t:Token,rem:List[Char]} {
match li {
"public" ++ rem -> {t: 'Public Unit, rem:rem}
"private" ++ rem -> {t: 'Private Unit, rem:rem}
_ -> {t: 'Err Unit, rem: li}
}
}
recursive data types
type List[t] = 'End | 'Cons {head:t, tail:List[t]}
# now you might notice an issue with this
# `type` defines non-distinct type alisases
# so what is the type of this...
# Introducing: type self references
# the above example is the same as this:
type List[t] = &a ('End | 'Cons {head:t, tail:a})
# example 2:
# a List[List[t]] is just:
&b ('End | 'Cons {head: &a ('End | 'Cons {head:t, tail:a}), tail: b})
Infinitely sized types are not allowed:
&a {x:Num, y:a}
However, infinite types without size are allowed:
&a {x:a}
This is not allowed:
&a a